Update Log

2024/04/09

MENDELEY REFERENCE DATABASE UPDATES

Lees, T., & O’Donohue, D. (2024). Formation of the Lawn Hill Impact Structure. Australian Journal of Earth Sciences, 71(3), 307–318. https://doi.org/10.1080/08120099.2023.2291729

Tankersley, K. B., Meyers, S. A., Stimpson, D. I., & Knepper, S. M. (2023). Evidence for a large late-Holocene Strewn Field in Kiowa County, Kansas, USA. Airbursts and Cratering Impacts, 1(1), 1–16. https://doi.org/10.14293/aci.2023.0005

Hyde, W. R., Kenny, G. G., Whitehouse, M. J., Wirth, R., Roddatis, V., Schreiber, A., Garde, A. A., Plan, A., & Larsen, N. K. (2024). Microstructural and isotopic analysis of shocked monazite from the Hiawatha impact structure: development of porosity and its utility in dating impact craters. Contributions to Mineralogy and Petrology, 179(3). https://doi.org/10.1007/s00410-024-02097-1

Joshi, G., Phukon, P., Agarwal, A., & Ojha, A. K. (2023). On the Emplacement of the Impact Melt at the Dhala Impact Structure, India. Journal of Geophysical Research: Planets, 128(7). https://doi.org/10.1029/2023JE007840

 

2024/03/07

MENDELEY REFERENCE DATABASE UPDATES

Lees, T., & O’Donohue, D. (2024). Formation of the Lawn Hill Impact Structure. Australian Journal of Earth Sciences, 1–12. https://doi.org/10.1080/08120099.2023.2291729

 

2024/02/27

Newly Added impactite deposits

Allan Hills BIT-58 Layer Airburst

  • Name: BIT-58
  • Coordinates: 76°43’57.7″S; 159°23’20.3″E
  • Country: Antarctica
  • Date Confirmed: 2024
  • Age: 280 Ma
  • Impactor type: Chondritic asteroid

Newly Added Hypervelocity Impact Structures

Jake Seller Draw

  • Name: Jake Seller Draw Impact Structure
  • Coordinates:
  • Country: United States
  • Date Confirmed: 2024
  • Buried: Yes. (~6.5 km)
  • Drilled: Yes.
  • Target Type: Sedimentary
    • Sandstone, limestone, shale, dolostone
  • Apparent Rim Diameter: 4.3 km
  • Age: 280 Ma
  • Impactor type: Unknown

MENDELEY REFERENCE DATABASE UPDATES

Sturm, S., Kenkmann, T., Cook, D., Fraser, A., & Sundell, K. (2024). Jake Seller Draw impact structure, Bighorn Basin, Wyoming, USA: The deepest known buried impact structure on Earth and its possible relation to the Wyoming crater field. Geological Society of America Bulletin. https://doi.org/10.1130/B37164.1

Joshi, G., Phukon, P., Agarwal, A., & Ojha, A. K. (2023). On the Emplacement of the Impact Melt at the Dhala Impact Structure, India. Journal of Geophysical Research: Planets, 128(7). https://doi.org/10.1029/2023JE007840

van Ginneken, M., Harvey, R. P., Goderis, S., Artemieva, N., Boslough, M., Maeda, R., Gattacceca, J., Folco, L., Yamaguchi, A., Sonzogni, C., & Wozniakiewicz, P. (2024). The identification of airbursts in the past: Insights from the BIT-58 layer. Earth and Planetary Science Letters, 627. https://doi.org/10.1016/j.epsl.2023.118562

 

2024 / 02 / 02

Newly Added Hypervelocity Impact Structures

Luna Structure

  • Name: Luna Impact Crater
  • Coordinates: 23° 40′ 58″ N; 69° 15′ 26″ E
  • Country: India
  • Date Confirmed: 2024
  • Buried: No.
  • Drilled: No.
  • Target Type: Sedimentary
    • Siltstone
  • Apparent Rim Diameter: 1.5–1.8 km
  • Age: 0.0069 Ma (6905 years)
  • Impactor type: Iron bollide

  MENDELEY REFERENCE DATABASE UPDATES

Sajinkumar, K. S., James, S., Indu, G. K., Chandran, S. R., Padmakumar, D., Aswathi, J., Keerthy, S., Praveen, M. N., Sorcar, N., Tomson, J. K., Chavan, A., Bhandari, S., Satyanarayanan, M., Bhushan, R., Dabhi, A., & Anilkumar, Y. (2024). The Luna structure, India: A probable impact crater formed by an iron bolide. Planetary and Space Science, 240. https://doi.org/10.1016/j.pss.2023.105826

 

2024 / 01 / 010

UPDATED HYPERVELOCITY IMPACT STRUCTURES

Mien Impact Structure

  • Age: 120 ± 1.0
    • Note: The age recommended by Jourdan et al. (2009) was essentially confirmed by Herrmann et al. (2023). Hermann et al. (2023) conducted U-Pb analyses on shocked zircons from impact melt rocks, establishing an age of 120 ± 1.0 Ma.

 MENDELEY REFERENCE DATABASE UPDATES

Quintero, R. R., Cavosie, A. J., Alwmark, S., Haines, P. W., Danišík, M., Timms, N. E., & Lim, D. (2023). Shocked quartz in sandstone from the buried Ilkurlka impact structure, Officer Basin, Western Australia. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.14108

Glazovskaya, L. I., Shcherbakov, V. D., & Piryazev, A. A. (2023). Logoisk impact structure, Belarus: Shock transformation of zircon. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.14110

Herrmann, M., Kenny, G. G., Martell, J., Whitehouse, M. J., & Alwmark, C. (2023). The first U–Pb age for shocked zircon from the Mien impact structure, Sweden, and implications for metamictization-induced zircon texture formed during impact events. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.14116

Wihanto, L., & Kenkmann, T. (2023). Geophysical and structural analyses of the Middlesboro impact structure, Kentucky, USA: Reactivation of a thrust detachment of the Appalachian foreland fold-and-thrust belt. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.14107

 

2023 / 10 / 02

NEWLY ADDED HYPERVELOCITY IMPACT STRUCTURES

Alhama de Almería Structure

  • Name: Alhama de Almería Impact Structure
  • Coordinates: 36° 58′ 39″ N; 2° 32′ 53″ W
  • Country: Spain
  • Date Confirmed: 2023
  • Buried: No.
  • Drilled: Yes.
  • Target Type: Sedimentary
    • Limestone / Dolostone
  • Apparent Rim Diameter: 22 km
  • Age: ~8 Ma – Late Tortonian
  • Impactor type: Unknown.


MENDELEY REFERENCE DATABASE UPDATES

Sánchez Gómez, S. T., Ormö, J., Alwmark, C., Holm-Alwmark, S., Zachén, G., Lilljequist, R., & Sánchez Garrido, J. A. (2023). A possible 5 km wide impact structure with associated 22 km wide exterior collapse terrain in the Alhabia–Tabernas Basin, southeastern Spain. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.14063

 

2023 / 09 / 28

MENDELEY REFERENCE DATABASE UPDATES

Schmidt, G., Goresy, A. el, Pernicka, E., Buchner, E., & Schmieder, M. (2017). Discussion and reply to “Buchner & Schmieder (2017): Possible traces of the impactor on fracture surfaces of shattered belemnites from the Nördlinger Ries crater (Southern Germany) and potential consequences for the classification of the Ries impactor” (Z. Dt. Ges. Geowiss., 168/2: 245-262). Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 168(3), 415–419. https://doi.org/10.1127/zdgg/2017/0139

el Goresy, A., & Schmidt, G. (2019). Discussion of “Rare metals on shatter cone surfaces from the Steinheim Basin (SW Germany)-remnants of the impacting body?” Geological Magazine, 156(9), 1639–1640. https://doi.org/10.1017/S001675681800064X

Schmidt, G. (2021). Chicxulub impact crater data from the Yucatán Peninsula in Mexico re-interpreted: evidence for an iron meteoritic asteroid as impactor. Europlanet Science Congress. https://doi.org/10.5194/epsc2021-49

Tsolmon, A., Dieter, M., Wolf, U. R., & Christian Koeberl. (2021). Tabun Khara Obo impact crater, Mongolia: Geophysics, geology, petrography, and geochemistry. In U. R. Wolf & C. Koeberl (Eds.), Large Meteorite Impacts and Planetary Evolution VI.

Goodwin, A., Tartèse, R., Garwood, R. J., Jerrett, R., & Joy, K. H. (2023). Provenance of altered carbon phases and impact history of the Stac Fada Member, NW Scotland. Meteoritics and Planetary Science, 58(8), 1099–1116. https://doi.org/10.1111/maps.14035

Gurov, Y. P., & Permiakov, V. v. (2023). Metal microspherules in breccias of the Onaping Formation, Sudbury impact structure, Ontario, Canada. Meteoritics and Planetary Science, 58(8), 1067–1078. https://doi.org/10.1111/maps.13999

Masotta, M., Peres, S., Folco, L., Mancini, L., Rochette, P., Glass, B. P., Campanale, F., Gueninchault, N., Radica, F., Singsoupho, S., & Navarro, E. (2020). 3D X-ray tomographic analysis reveals how coesite is preserved in Muong Nong-type tektites. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-76727-6

Rochette, P., Beck, P., Bizzarro, M., Braucher, R., Cornec, J., Debaille, V., Devouard, B., Gattacceca, J., Jourdan, F., Moustard, F., Moynier, F., Nomade, S., & Reynard, B. (2021). Impact glasses from Belize represent tektites from the Pleistocene Pantasma impact crater in Nicaragua. Communications Earth and Environment, 2(1). https://doi.org/10.1038/s43247-021-00155-1

Rochette, P., Baratoux, D., Braucher, R., Cornec, J., Debaille, V., Devouard, B., Gattacceca, J., Gounelle, M., Jourdan, F., Moustard, F., & Nomade, S. (2023). Linking a distal ejecta with its source crater: a probabilistic approach applied to tektites. Comptes Rendus – Geoscience, 355, 145–155. https://doi.org/10.5802/crgeos.206

Schmidt, G. (2023). Review of literature data rom the Ries Impact Crater: Evidence of a pallasitic projectile. 54th Lunar and Planetary Science Conference, 1077.

 

2023 / 07 / 18

MENDELEY REFERENCE DATABASE UPDATES

Reimold, W. U., Hauser, N., Oliveira, A. L., Maciel, A. R. P., Goderis, S., Pittarello, L., Wegner, W., Fischer-Goedde, M., Koeberl, C., Debaille, V., & de Souza, C. S. M. (2023). Genesis of the mafic impact melt rock in the northwest sector of the Vredefort Dome, South Africa. Meteoritics & Planetary Science, 58(7), 907–944. https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.14027?campaign=woletoc

Hietala, S., Jokinen, J., Lerssi, J., Niskanen, M., Pesonen, L. J., & Plado, J. (2023). Summanen structure: Further geological and geophysical evidence of a meteorite impact event in Central Finland. Meteoritics & Planetary Science, 58(7), 1002–1017. https://onlinelibrary.wiley.com/doi/full/10.1111/maps.14033?campaign=woletoc

Aneeshkumar, V., Indu, G. K., Santosh, M., James, S., Chandran, S. R., Padmakumar, D., & Sajinkumar, K. S. (2022). Terrestrial impact craters track the voyage of lithospheric plates. Geological Journal, 57(9). https://doi.org/10.1002/gj.4512

Sullivan, D. L., Brandon, A. D., Eldrett, J., Bergman, S. C., Wright, S., & Minisini, D. (2020). High resolution osmium data record three distinct pulses of magmatic activity during cretaceous Oceanic Anoxic Event 2 (OAE-2). Geochimica et Cosmochimica Acta, 285. https://doi.org/10.1016/j.gca.2020.04.002

Kring, D. A. (2017). Guidebook to the Geology of Barringer Meteorite Crater, Arizona (a k a Meteor Crater). Second edition. http://www.lpi.usra.edu/exploration/training/resources/measuring_meteor_crater/

 

2023 / 06 / 28

MENDELEY REFERENCE DATABASE UPDATES

Spooner, I., Stevens, G., Morrow, J., Pufahl, P., Grieve, R., Raeside, R., Pilon, J., Stanley, C., Barr, S., & McMullin, D. (2009). Identification of the Bloody Creek structure, a possible impact crater in southwestern Nova Scotia, Canada. Meteoritics and Planetary Science, 44(8), 1193–1202. https://doi.org/10.1111/j.1945-5100.2009.tb01217.x

Vasconcelos, M. A. R., Wünnemann, K., Crósta, A. P., Molina, E. C., Reimold, W. U., & Yokoyama, E. (2012). Insights into the morphology of the Serra da Cangalha impact structure from geophysical modeling. Meteoritics and Planetary Science, 47(10). https://doi.org/10.1111/maps.12001

Adepelumi, A., M. Flexor, J., L. Fontes, S., & A. Schnegg, P. (2020). Interpretation of the aeromagnetic signatures of the Serra da Cangalha impact crater. https://doi.org/10.3997/2214-4609-pdb.168.arq_158

Milam, K. A. (2010). A revised diameter for the serpent mound impact crater in southern Ohio. Ohio Journal of Science, 110(3).

Milam, K. A., Hester, A., & Malinski, P. (2010). An anomalous breccia associated with the serpent mound impact crater, southern Ohio. Ohio Journal of Science, 110(2).

Höltke, O., & Rasser, M. W. (2017). Land snails from the Miocene Steinheim impact crater lake sediments (Baden-Württemberg, South Germany). Neues Jahrbuch Fur Geologie Und Palaontologie – Abhandlungen, 285(3). https://doi.org/10.1127/njgpa/2017/0681

Mashchak, M. S., & Naumov, M. v. (2012). The Suavjärvi impact structure, NW Russia. Meteoritics and Planetary Science, 47(10). https://doi.org/10.1111/j.1945-5100.2012.01428.x

Komatsu, G., Coletta, A., Battagliere, M. L., & Virelli, M. (2019). Suavjärvi, Russia. In Encyclopedic Atlas of Terrestrial Impact Craters. https://doi.org/10.1007/978-3-030-05451-9_52

Desbarats, A. J. (2009). On elevated fluoride and boron concentrations in groundwaters associated with the Lake Saint-Martin impact structure, Manitoba. Applied Geochemistry, 24(5), 915–927. https://doi.org/10.1016/j.apgeochem.2009.02.016

 

2023 / 05 / 24

MENDELEY REFERENCE DATABASE UPDATES

Anand, A., Singh, A. K., Mezger, K., & Pati, J. K. (2023). Chromium isotopes identify the extraterrestrial component in impactites from Dhala impact structure, India. Meteoritics & Planetary Science, 58(5), 722–736.

Zamiatine, D. A., Zamyatin, D. A., Mikhalevskii, G. B., & Chebikin, N. S. (2023). Silica Polymorphs Formation in the JanisJarvi Impact Structure: Tridymite, Cristobalite, Quartz, Trace Stishovite and Coesite. Minerals, 13(5).

Elo, S., Kivekäs, L., Kujala, H., Lahti, S. I., & Pihlaja, P. (1992). Recent studies of the Lake Sääksjärvi meteorite impact crater, southwestern Finland. Tectonophysics, 216(1–2). https://doi.org/10.1016/0040-1951(92)90163-Z

Rajmon, D., Copeland, P., & Reid, A. M. (2002). “Pseudotachylytes” That Never Melted: A Thermal Story from Roter Kamm Crater, Namibia. Lunar and Planetary Science XXXIII.

Rajmon, D., Copeland, P., & Reid, A. M. (2005). Argon isotopic analysis of breccia veins from the Roter Kamm crater, Namibia, and implications for their thermal history. Meteoritics and Planetary Science, 40(6). https://doi.org/10.1111/j.1945-5100.2005.tb00158.x

Miller, R. M. G. (2010). Roter Kamm impact crater of Namibia: New data on rim structure, target rock geochemistry, ejecta, and meteorite trajectory. Special Paper of the Geological Society of America, 465. https://doi.org/10.1130/2010.2465(24)

Cavosie, A. J., Spencer, C. J., Evans, N., Rankenburg, K., Thomas, R. J., & Macey, P. H. (2022). Granular titanite from the Roter Kamm crater in Namibia: Product of regional metamorphism, not meteorite impact. Geoscience Frontiers, 13(3). https://doi.org/10.1016/j.gsf.2022.101350

 

2023 / 05 / 17

MENDELEY REFERENCE DATABASE UPDATES

Arp, G., Reimer, A., Simon, K., Sturm, S., Wilk, J., Kruppa, C., Hecht, L., Hansen, B. T., Pohl, J., Reimold, W. U., Kenkmann, T., & Jung, D. (2019). The Erbisberg drilling 2011: Implications for the structure and postimpact evolution of the inner ring of the Ries impact crater. Meteoritics and Planetary Science, 54(10). https://doi.org/10.1111/maps.13293

Jung, D., & Kroepelin, K. (2020). Thrust faulting and block rotation at the eastern Ries crater margin – Geological investigations at the Eireiner quarry (Wemding). Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0014

Jung, D., Haas, U., Doppler, G., & Herz, M. (2020). Distribution and thickness of the ejecta blanket south of the Ries crater (Miocene, South Germany). Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0013

Jung, D., & Kroepelin, K. (2020). Geology of the eastern and northeastern Ries crater margin and the “Vorries”-zone. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0006

Markgraf, K., Kroepelin, K., Hölzl, S., Jung, D., & Arp, G. (2020). Lacustrine clays associated with mud cracks and bituminous shales of the central Ries crater fill margin (Miocene, Nördlinger Ries). Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0016

Doppler, G., Haas, U., & Herz, M. (2020). Tertiary Molasse south of the Ries Crater. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0010

Karolina, P. (2021). A new Polish tektite finds from the Zittau Basin area. Przeglad Geologiczny, 69(4). https://doi.org/10.7306/2021.14

Wimmer, K., Jung, D., & Kroepelin, K. (2021). A profile section from Feuerletten (Trossingen Fm.) to Impressamergel Fm. at the northwestern rim of the Ries crater near Fremdingen (Miocene, South Germany). Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 103. https://doi.org/10.1127/jmogv/103/0005

Wimmer, K., Jung, D., & Kroepelin, K. (2021). A profile section from Feuerletten (Trossingen Fm.) to Impressamergel Fm. at the northwestern rim of the Ries crater near Fremdingen (Miocene, South Germany). Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 103. https://doi.org/10.1127/jmogv/103/0005

Zeng, L., Ruge, D. B., Berger, G., Heck, K., Hölzl, S., Reimer, A., Jung, D., & Arp, G. (2021). Sedimentological and carbonate isotope signatures to identify fluvial processes and catchment changes in a supposed impact ejecta-dammed lake (Miocene, Germany). Sedimentology, 68(7). https://doi.org/10.1111/sed.12888

Magna, T., Jiang, Y., Skála, R., Wang, K., Sossi, P. A., & Žák, K. (2021). Potassium elemental and isotope constraints on the formation of tektites and element loss during impacts. Geochimica et Cosmochimica Acta, 312. https://doi.org/10.1016/j.gca.2021.07.022

Brachaniec, T. (2022). Modern areas of occurrence of moldavites – conclusions from their experimental transport across the Lusatian Neisse. Przeglad Geologiczny, 70(1). https://doi.org/10.7306/2022.4

di Vincenzo, G. (2022). High precision multi-collector 40Ar/39Ar dating of moldavites (Central European tektites) reconciles geochrological and paleomagnetic data. Chemical Geology, 608. https://doi.org/10.1016/j.chemgeo.2022.121026

Sauro, F., Payler, S. J., Massironi, M., Pozzobon, R., Hiesinger, H., Mangold, N., Cockell, C. S., Frias, J. M., Kullerud, K., Turchi, L., Drozdovskiy, I., & Bessone, L. (2023). Training astronauts for scientific exploration on planetary surfaces: The ESA PANGAEA programme. Acta Astronautica, 204. https://doi.org/10.1016/j.actaastro.2022.12.034

Buchner, E., Schmieder, M., Schwarz, W. H., & Trieloff, M. (2013). The age of the Ries impact crater-an overview and brief discussion of the more recent datings of Riesimpakts. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 164(3). https://doi.org/10.1127/1860-1804/2013/0037

Koeberl, C., Denison, C., Ketcham, R. A., & Reimold, W. U. (2002). High-resolution X-ray computed tomography of impactites. Journal of Geophysical Research: Planets, 107(10). https://doi.org/10.1029/2001je001833

Jung, D. (2021). New drillings in the autochthonous surroundings of the Ries crater. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 103. https://doi.org/10.1127/jmogv/103/0004

Wimmer, K., Schweigert, G., Jung, D., & Simon, T. (2022). First Description of Limestone Shatter Cones in the Middle Keuper of the Ries Crater. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 104. https://doi.org/10.1127/jmogv/104/0002

Arp G. (2006). Sediments of the Ries Crater Lake (Miocene, Southern Germany). 21st Meeting of Sedimentologists / 4th Meeting of SEPM Central European Section.

Arp, G. (2020). Sedimentary and chemical evolution of the Ries crater lake. Jahresberichte Und Mitteilungen Des Oberrheinischen Geologischen Vereins, 102. https://doi.org/10.1127/jmogv/102/0004

Schnetzler, C. C., Philpotts, J. A., & Pinson, W. H. (1969). Rubidium-strontium correlation study of moldavites and Ries Crater material. Geochimica et Cosmochimica Acta, 33(9). https://doi.org/10.1016/0016-7037(69)90057-X

Schmieder, M., Kennedy, T., Jourdan, F., Buchner, E., & Reimold, W. U. (2018). Response to comment on “A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events” by Schmieder et al. (Geochimica et Cosmochimica Acta 220 (2018) 146–157). In Geochimica et Cosmochimica Acta (Vol. 238). https://doi.org/10.1016/j.gca.2018.07.025

Rocholl, A., Böhme, M., Gilg, H. A., Pohl, J., Schaltegger, U., & Wijbrans, J. (2018). Comment on “A high-precision 40Ar/39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events” by Schmieder et al. (Geochimica et Cosmochimica Acta 220 (2018) 146–157). In Geochimica et Cosmochimica Acta (Vol. 238). https://doi.org/10.1016/j.gca.2018.05.018

Brachaniec, T. (2020). Moldavite finds in middle miocene (Langhian stage) deposits of southwestern poland. Carnets de Geologie, 20(12). https://doi.org/10.2110/carnets.2020.2012

Wulf, G., & Kenkmann, T. (2021). Rampart craters on Earth. Special Paper of the Geological Society of America, 550. https://doi.org/10.1130/2021.2550(28)

Riding, R. (1979). Origin and diagenesis of lacustrine algal bioherms at the margin of the Ries crater, Upper Miocene, southern Germany. Sedimentology, 26(5). https://doi.org/10.1111/j.1365-3091.1979.tb00936.x

Artemieva, N., & Wünnemann, K. (2009). Ries Crater and suevite revisited: part II modelling. Lunar and Planetary Science Conference, 40.

Arp, G., Hansen, B. T., Pack, A., Reimer, A., Schmidt, B. C., Simon, K., & Jung, D. (2017). The soda lake—mesosaline halite lake transition in the Ries impact crater basin (drilling Löpsingen 2012, Miocene, southern Germany). Facies, 63(1). https://doi.org/10.1007/s10347-016-0483-7

Zhao, Z., Grohmann, S., Zieger, L., Dai, W., & Littke, R. (2022). Evolution of organic matter quantity and quality in a warm, hypersaline, alkaline lake: The example of the Miocene Nördlinger Ries impact crater, Germany. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.989478

Morlok, A., Stojic, A., Dittmar, I., Hiesinger, H., Tiedeken, M., Sohn, M., Weber, I., & Helbert, J. (2016). Mid-infrared spectroscopy of impactites from the Nördlinger Ries impact crater. Icarus, 264. https://doi.org/10.1016/j.icarus.2015.10.003

Rocholl, A., Ovtcharova, M., Schaltegger, U., Wijbrans, J., Pohl, J., Prieto, J., Ulbig, A., & Boehme, M. (2011). A precise and accurate ” astronomical ” age of the Ries impact crater , Germany : A cautious note on argon dating of impact material. Geophysical Research Abstracts, 13.

Horn, P., Müller-Sohnius, D., Köhler, H., & Graup, G. (1985). RbSr systematics of rocks related to the Ries Crater, Germany. Earth and Planetary Science Letters, 75(4). https://doi.org/10.1016/0012-821X(85)90181-5

Christ, N., Maerz, S., Kutschera, E., Kwiecien, O., & Mutti, M. (2018). Palaeoenvironmental and diagenetic reconstruction of a closed-lacustrine carbonate system – the challenging marginal setting of the Miocene Ries Crater Lake (Germany). Sedimentology, 65(1). https://doi.org/10.1111/sed.12401

Skála, R. (2002). Shock-induced phenomena in limestones in the quarry near Ronheim, the Ries Crater, Germany. Vestnik Ceskeho Geologickeho Ustavu, 77(4).

Buchner, E., & Schmieder, M. (2017). Possible traces of the impactor on fracture surfaces of shattered belemnites from the Nördlinger ries crater (Southern Germany) and potential consequences for the classification of the Ries impactor. Zeitschrift Der Deutschen Gesellschaft Fur Geowissenschaften, 168(2). https://doi.org/10.1127/zdgg/2017/0090

Arp, G., Dunkl, I., Jung, D., Karius, V., Lukács, R., Zeng, L., Reimer, A., & Head, J. W. (2021). A Volcanic Ash Layer in the Nördlinger Ries Impact Structure (Miocene, Germany): Indication of Crater Fill Geometry and Origins of Long-Term Crater Floor Sagging. Journal of Geophysical Research: Planets, 126(4). https://doi.org/10.1029/2020JE006764

Montano, D., Gasparrini, M., Gerdes, A., della Porta, G., & Albert, R. (2021). In-situ U-Pb dating of Ries Crater lacustrine carbonates (Miocene, South-West Germany): Implications for continental carbonate chronostratigraphy. Earth and Planetary Science Letters, 568. https://doi.org/10.1016/j.epsl.2021.117011

Tartèse, R., Endley, S., & Joy, K. H. (2022). U-Pb dating of zircon and monazite from the uplifted Variscan crystalline basement of the Ries impact crater. Meteoritics and Planetary Science, 57(4). https://doi.org/10.1111/maps.13798

Newsom, H. E., Graup, G., Sewards, T., & Keil, K. (1986). Fluidization and hydrothermal alteration of the Suevite deposit at the Ries Crater, West Germany, and implications for Mars. Journal of Geophysical Research, 91(B13). https://doi.org/10.1029/jb091ib13p0e239

el Goresy, A., & Donnay, G. (1968). A new allotropic form of carbon from the Ries Crater. Science, 161(3839). https://doi.org/10.1126/science.161.3839.363

Stähle, V., Chanmuang N, C., Schwarz, W. H., Trieloff, M., & Varychev, A. (2022). Newly detected shock-induced high-pressure phases formed in amphibolite clasts of the suevite breccia (Ries impact crater, Germany): Liebermannite, kokchetavite, and other ultrahigh-pressure phases. Contributions to Mineralogy and Petrology, 177(8). https://doi.org/10.1007/s00410-022-01936-3

Crósta, A. P. (2004). Impact craters in Brazil: How far we’ve gotten. Meteoritics and Planetary Science, 39(SUPPL.).

Clutson, M. J., Brown, D. E., & Tanner, L. H. (2018). Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada. https://doi.org/10.1007/978-3-319-68009-5_5

 

2023 / 05 / 16

MENDELEY REFERENCE DATABASE UPDATES

Kumar, J., Negi, M. S., Sharma, R., Saha, D., Mayor, S., & Asthana, M. (2011). Ramgarph magnetic anomalu in the Chambal Valley sector of Vindhyan Basin: A possible meteorite impact structure and its implications in hydrocarbon exploration. The 2nd South Asian Geoscience Conference and Exhibition, GEOIndia2011.

Stone, Donald S. (1999). Abstract: Geology of the Cloud Creek Impact Structure on the Casper Arch, Central Wyoming  AAPG Bulletin, 83. https://doi.org/10.1306/e4fd303b-1732-11d7-8645000102c1865d

Donofrio, R. R. (1981). Impact craters: implications for basement hydrocarbon production. Journal of Petroleum Geology, 3(3). https://doi.org/10.1111/j.1747-5457.1981.tb00931.x

Herber, B. D., Weimer, P., Bouroullec, R., Barton, R. J., Behringer, D. N., Hammon, W. S., & Gutterman, W. S. (2022). Three-dimensional seismic interpretation of a meteorite impact feature, Red Wing Creek field, Williston Basin, western North Dakota. AAPG Bulletin, 106(7). https://doi.org/10.1306/02032217261

Murali, A. v., & Lulla, K. P. (1992). Ramgarh crater, rajasthan, india: Study of multispectral images obtained by indian remote sensing satellite (IRS‐IA). Geocarto International, 7(3). https://doi.org/10.1080/10106049209354382

Aneeshkumar, V., Chandran, S. R., James, S., Santosh, M., Padmakumar, D., Aswathi, J., Keerthy, S., Anilkumar, Y., Praveen, M. N., Satyanarayanan, M., & Sajinkumar, K. S. (2022). Meteorite impact at Ramgarh, India: Petrographic and geochemical evidence, and new geochronological insights. Lithos, 426–427. https://doi.org/10.1016/j.lithos.2022.106779

Masaitis, V. L., Mashchak, M. S., Naumov, M. v., & Selivanovskaya, T. v. (2020). Mode of Occurrence and Composition of Impact-Generated and Impact-Modified Formations. https://doi.org/10.1007/978-3-030-32043-0_3

Lapshin, A. A., Kolomiets, A. M., Ivanov, A. v., Krayev, I. M., & Malyshev, D. M. (2020). Water risks in geoparks of the Nizhny Novgorod region. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 20(1.3). https://doi.org/10.5593/sgem2020V/1.3/s02.36

Masaitis, V. L., Mashchak, M. S., & Naumov, M. v. (1996). The puchezh-katunki astrobleme: A structural model of a giant impact crater. Solar System Research, 30(1).

Masaitis, V. L., Mashchak, M. S., & Naumov, M. v. (1996). The puchezh-katunki astrobleme: A structural model of a giant impact crater. Solar System Research, 30(1).

Shiryaev, A. A., Pavlushin, A. D., Pakhnevich, A. v., Kovalenko, E. S., Averin, A. A., & Ivanova, A. G. (2022). Structural peculiarities, mineral inclusions, and point defects in yakutites—A variety of impact-related diamond. Meteoritics and Planetary Science, 57(3). https://doi.org/10.1111/maps.13791

Liao, Y. J., Shi, X. Z., Luo, C. B., & He, C. Y. (2022). Diamond-XII: a new type of exotic cubic carbon allotrope. Materials Advances. https://doi.org/10.1039/d2ma00920j

Agasheva, E. v., Kozmenko, O. A., Malygina, E. v., Afanasiev, V. P., & Pokhilenko, N. P. (2022). Composition and PGE Distribution in Suevite of the Popigai Astrobleme. Doklady Earth Sciences, 506(2). https://doi.org/10.1134/S1028334X22700283

Chepurov, A. I., Goryainov, S. v., Zhimulev, E. I., Sonin, V. M., Chepurov, A. A., Karpovich, Z. A., Afanas’ev, V. P., & Pokhilenko, N. P. (2022). Raman Spectroscopy of Impact Popigai Astrobleme Diamonds Heat Treated at 5.5 GPa. Journal of Engineering Physics and Thermophysics, 95(7). https://doi.org/10.1007/s10891-022-02638-0

Chepurov, A. I., Goryainov, S. v., Zhimulev, E. I., Sonin, V. M., Chepurov, A. A., Karpovich, Z. A., Afanas’ev, V. P., & Pokhilenko, N. P. (2022). Raman Spectroscopy of Impact Popigai Astrobleme Diamonds Heat Treated at 5.5 GPa. Journal of Engineering Physics and Thermophysics, 95(7). https://doi.org/10.1007/s10891-022-02638-0

Glikson, A. Y., & Pirajno, F. (2018). The world’s largest late to post-archaean asteroid impact structures. In Modern Approaches in Solid Earth Sciences (Vol. 14). https://doi.org/10.1007/978-3-319-74545-9_3

Yakymchuk, M., & Korchagin, I. N. (2020). The results of testing methods of frequency resonance processing of satellite images within areas of technical micro-diamonds (lonsdalite) deposits location. Geoinformatics 2020 – XIXth International Conference “Geoinformatics: Theoretical and Applied Aspects.” https://doi.org/10.3997/2214-4609.2020geo036

Afanasiev, V., Pokhilenko, N., Eliseev, A., Gromilov, S., Ugapieva, S., & Senyut, V. (2019). Impact Diamonds: Types, Properties and Uses. In Springer Proceedings in Earth and Environmental Sciences. https://doi.org/10.1007/978-3-030-22974-0_41

Bottke, W. F., Vokrouhlicky, D., Ghent, B., Mazrouei, S., Robbins, S., & Marchi, S. (2016). On Asteroid Impacts, Crater Scaling Laws, and a Proposed Younger Surface Age for Venus. Lunar and Planetary Science Conference, 47(1903).

Raikhlin, A. I. (1996). Suevites of the popigai impact crater: Internal structure and conditions of formation. Solar System Research, 30(1).

Shumilova, T., & Vladykin, N. (2020). High pressure carbon polymers from impact melt rock of the giant popigai astrobleme (Siberia, Russia). IOP Conference Series: Earth and Environmental Science, 609(1). https://doi.org/10.1088/1755-1315/609/1/012054

Algebraistova, N. K., Perfilova, O. Y., Kolotushkin, D. M., & Komarova, E. S. (2018). Material constitution and recovery of impact diamonds. Mining Informational and Analytical Bulletin, 2018(6). https://doi.org/10.25018/0236-1493-2018-6-0-13-19

Ugapeva, S., Afanasiev, V., Pavlushin, A., & Eliseev, A. (2019). Main Features of Yakutites from the Ebelyakh Placer. IOP Conference Series: Earth and Environmental Science, 362(1). https://doi.org/10.1088/1755-1315/362/1/012031

Kalvoda, J., Klokočník, J., Kostelecký, J., & Bezděk, A. (2013). Mass distribution of earth landforms determined by aspects of the geopotential as computed from the global gravity field model EGM 2008. Acta Universitatis Carolinae, Geographica, 48(2). https://doi.org/10.14712/23361980.2015.1

Mardon, A. A. (1995). The mystery of the 536 A.D. dust veil event: was it a cometary or meteorite impact. Large Meteorite Impacts and Planetary Evolution, 14(10).

Klokočník, J., Bezděk, A., & Kostelecký, J. (2022). Gravity field aspects for identification of cosmic impact structures on Earth. In Special Paper of the Geological Society of America (Vol. 553). https://doi.org/10.1130/2021.2553(21)

Rochette, P., Bezaeva, N. S., Kosterov, A., Gattacceca, J., Masaitis, V. L., Badyukov, D. D., Giuli, G., Lepore, G. O., & Beck, P. (2019). Magnetic properties and redox state of impact glasses: A review and new case studies from Siberia. In Geosciences (Switzerland) (Vol. 9, Issue 5). https://doi.org/10.3390/geosciences9050225

Rampino, M. R. (2020). Relationship between impact-crater size and severity of related extinction episodes. In Earth-Science Reviews (Vol. 201). https://doi.org/10.1016/j.earscirev.2019.102990

Shumilova, T. G., Ulyashev, V. v., Kazakov, V. A., Isaenko, S. I., Svetov, S. A., Chazhengina, S. Y., & Kovalchuk, N. S. (2020). Karite – diamond fossil: A new type of natural diamond. Geoscience Frontiers, 11(4). https://doi.org/10.1016/j.gsf.2019.09.011

Gromilov, S. A., Afanasiev, V. P., & Pokhilenko, N. P. (2018). Moissanites of the Popigai Astrobleme. Doklady Earth Sciences, 481(2). https://doi.org/10.1134/S1028334X18080275

el Goresy, A., Dubrovinsky, L. S., Gillet, P., Mostefaoui, S., Graup, G., Drakopoulos, M., Simionovici, A. S., Swamy, V., & Masaitis, V. L. (2003). Une nouvelle forme de carbone, ultra-dure et transparente du cratère d’impact de Popigai en Russie. Comptes Rendus – Geoscience, 335(12). https://doi.org/10.1016/j.crte.2003.07.001

Yelisseyev, A., Vins, V., Afanasiev, V., & Rybak, A. (2017). Effect of electron irradiation on optical absorption of impact diamonds from the Popigai meteorite crater. Diamond and Related Materials, 79. https://doi.org/10.1016/j.diamond.2017.08.012

Baek, W., Gromilov, S. A., Kuklin, A. v., Kovaleva, E. A., Fedorov, A. S., Sukhikh, A. S., Hanfland, M., Pomogaev, V. A., Melchakova, I. A., Avramov, P. v., & Yusenko, K. v. (2019). Unique Nanomechanical Properties of Diamond-Lonsdaleite Biphases: Combined Experimental and Theoretical Consideration of Popigai Impact Diamonds. Nano Letters, 19(3). https://doi.org/10.1021/acs.nanolett.8b04421

Afanasiev, V. P., Pruuel, R., Kurepin, A. E., Gromilov, S. A., & Vityaz, P. A. (2022). Comparative Characteristics of Impact Diamonds of the Popigai Astrobleme and Synthetic Diamonds Produced by Explosion. Journal of Engineering Physics and Thermophysics, 95(7). https://doi.org/10.1007/s10891-022-02639-z

Afanasiev, V. P., Pruuel, R., Kurepin, A. E., Gromilov, S. A., & Vityaz, P. A. (2022). Comparative Characteristics of Impact Diamonds of the Popigai Astrobleme and Synthetic Diamonds Produced by Explosion. Journal of Engineering Physics and Thermophysics, 95(7). https://doi.org/10.1007/s10891-022-02639-z

Afanasiev, V. P., Pruuel, R., Kurepin, A. E., Gromilov, S. A., & Vityaz, P. A. (2022). Comparative Characteristics of Impact Diamonds of the Popigai Astrobleme and Synthetic Diamonds Produced by Explosion. Journal of Engineering Physics and Thermophysics, 95(7). https://doi.org/10.1007/s10891-022-02639-z

Ovsyuk, N. N., Goryainov, S. v., & Likhacheva, A. Y. (2018). Raman Scattering in Hexagonal Diamond. Bulletin of the Russian Academy of Sciences: Physics, 82(7). https://doi.org/10.3103/S1062873818070213

Goryainov, S. v., Likhacheva, A. Y., & Ovsyuk, N. N. (2018). Raman Scattering in Lonsdaleite. Journal of Experimental and Theoretical Physics, 127(1). https://doi.org/10.1134/S1063776118070051

Ovsyuk, N. N., Goryainov, S. v., & Likhacheva, A. Y. (2019). Raman scattering of impact diamonds. Diamond and Related Materials, 91. https://doi.org/10.1016/j.diamond.2018.11.017

Ohfuji, H., Nakaya, M., Yelisseyev, A. P., Afanasiev, V. P., & Litasov, K. D. (2017). Mineralogical and crystallographic features of polycrystalline yakutite diamond. In Journal of Mineralogical and Petrological Sciences (Vol. 112, Issue 1). https://doi.org/10.2465/jmps.160719g

Masaitis, V. L., Petrov, O. v., & Naumov, M. v. (2019). Impact lithologies–a key for reconstruction of rock-forming processes and a geological model of the Popigai crater, northern Siberia. Australian Journal of Earth Sciences, 66(1). https://doi.org/10.1080/08120099.2018.1509372

Yelisseyev, A., Khrenov, A., Afanasiev, V., Pustovarov, V., Gromilov, S., Panchenko, A., Pokhilenko, N., & Litasov, K. (2015). Luminescence of natural carbon nanomaterial: Impact diamonds from the Popigai crater. Diamond and Related Materials, 58. https://doi.org/10.1016/j.diamond.2015.06.010

Yelisseyev, A. P., Afanasyev, V. P., & Gromilov, S. A. (2018). Yakutites from the Popigai meteorite crater. Diamond and Related Materials, 89. https://doi.org/10.1016/j.diamond.2018.08.003

Chepurov, A., Goryainov, S., Gromilov, S., Zhimulev, E., Sonin, V., Chepurov, A., Karpovich, Z., Afanasiev, V., & Pokhilenko, N. (2023). HPHT-Treated Impact Diamonds from the Popigai Crater (Siberian Craton): XRD and Raman Spectroscopy Evidence. Minerals, 13(2). https://doi.org/10.3390/min13020154

Boschi, S., Schmitz, B., Heck, P. R., Cronholm, A., Defouilloy, C., Kita, N. T., Monechi, S., Montanari, A., Rout, S. S., & Terfelt, F. (2017). Late Eocene 3He and Ir anomalies associated with ordinary chondritic spinels. Geochimica et Cosmochimica Acta, 204. https://doi.org/10.1016/j.gca.2017.01.028

Afanasiev, V., Gromilov, S., Sonin, V., Zhimulev, E., & Chepurov, A. (2019). Graphite in rocks of the popigai impact crater: Residual or retrograde? Turkish Journal of Earth Sciences, 28(3). https://doi.org/10.3906/yer-1808-6

Yelisseyev, A. P., Afanasiev, V. P., Panchenko, A. v., Gromilov, S. A., Kaichev, V. v., & Saraev. (2016). Yakutites: Are they impact diamonds from the Popigai crater? Lithos, 265. https://doi.org/10.1016/j.lithos.2016.07.031

Sonin, V., Zhimulev, E., Chepurov, A., Pokhilenko, N., Gryaznov, I., Chepurov, A., & Afanasiev, V. (2021). Experimental etching of diamonds: Extrapolation to impact diamonds from the popigai crater (russia). Minerals, 11(11). https://doi.org/10.3390/min11111229

 

2023 / 04 / 16

UPDATED HYPERVELOCITY IMPACT STRUCTURES

Tenoumer Crater

  • Longitude: 10° 24′ 23″ W

 

2023 / 04 / 18

Newly Added Hypervelocity Impact Structures

Ilkurlka Structure

  • Name: Ilkrulka Structure
  • Coordinates: 28 22.00′ 127 26.00′
  • Country: Australia
  • Date Confirmed: 2022 (Quintero et al., 2022)
  • Buried: Yes
  • Drilled: Yes
  • Target Type: Sedimentary
  • Diameter (crater rim): ~12km
  • Age: Middle Cambrian
  • Impactor type: Unknown

Nova Colinas Structure

  • Name: Nova Colinas Structure (proposed by Reimold et al. 2022). Previously called Macapá Structure
  • Coordinates: 07°09033″S/46°06030″W
  • Country: Brazil
  • Date Confirmed: 2022 (Reimold et al., 2022)
    • Reimold et al. (2022) identified shocked quartz with PDFs, feather features, and PFs, in quartz arenites.
  • Buried: No
  • Drilled: No
  • Target Type: Sedimentary layers (and potentially some volcanics) on Precambrian crystalline basement
  • Apparent Diameter: ~ 7 km defined by the outer ridges likely representing the crater rim zone, from satellite images.
  • Age: Middle Cambrian
    • Relative age estimates were proposed by Reimold et al. (2022) based on stratigraphic relationships.
  • Impactor Type: Unknown

Ora Banda Structure:

  • Name: Ora Banda Structure
  • Coordinates: 30° 25′ 27″ S; 121° 10′ 53″ E
  • Country: Australia
  • Date Confirmed: 2022
  • Buried: Yes
  • Drilled: No
  • Target Type: Crystalline
    • Basalt, greenstone
  • Diameter: Unknown
  • Age: Middle ~100 Ma – Early Cretaceous
    • Zircon dating (on-going U-Pb studies – Quintero et al., (2022))
  • Impactor Type: 200-600m object, unknown composition

 

2023 / 04 / 18

UPDATED HYPERVELOCITY IMPACT STRUCTURES

Keurusselkä Structure

  • Buried: Yes. under Quaternary sediments (Hietala et al. 2022).
  • Drilled: Yes. Three holes were drilled on the SW edge of the central uplift (Hietala et al., 2022).
  • Central uplift diameter: 5 km (Hietala et al., 2022).
  • Apparent rim diameter: 37.5 km (Hietala et al., 2022).

 

NEWLY ADDED IMPACTITE DEPOSITS

Belize, Tektite Glass:

Coordinates: 17.0984 degrees N, 88.9414 degrees W

Country: Belize (Koeberl et al., 2022)

Date Confirmed: 2022 (Koeberl et al. 2022)

Age: 804 +- 9ka

Ar40/Ar39 dating method, link to Pantasma structure (Koeberl et al., 2022)

Host crater: Pantasma structure in Nicaragua; 13.3655 degrees N, -85.9515 degrees W (Koeberl et al., 2022)

 

2023 / 09 /20

Impact Deposit Updates

Atacamaites

  • Rename: Atacamaites

2022 / 09 / 28

MENDELEY REFERENCE DATABASE UPDATES

Kuzina, Dilyara. M., Gattacceca, Jérôme., Bezaeva, Natalia. S., Badyukov, Dmitry. D., Rochette, Pierre., Quesnel, Yoann., Demory, François., & Borschneck, Daniel. (2022). Paleomagnetic study of impactites from the Karla impact structure suggests protracted postimpact hydrothermalism. Meteoritics and Planetary Science. https://doi.org/10.1111/maps.13906

Folco, L., & Reimold, W. U. (2020). Impact Craters and Meteorites: The Egyptian Record. In Z. Hamimi, A. El-Barkooky, H. Fritz, & Y. Abd El-Rahman (Eds.), The Geology of Egypt. Regional Geology Reviews. (pp. 415–444). Springer. Cham.

Cavosie, Aaron. J., & Folco, Luigi. (2021). Shock-twinned zircon in ejecta from the 45-m-diameter Kamil crater in southern Egypt. In W. U. Reimold & C. Koeberl (Eds.), Large meteorite impacts and planetary evolution VI (Vol. 550). Geological Society of America.

Folco, L., Carone, L., D’Orazio, M., Cordier, C., Suttle, M. D., van Ginneken, M., & Masotta, M. (2022). Microscopic impactor debris at Kamil Crater (Egypt): The origin of the Fe-Ni oxide spherules. Geochimica et Cosmochimica Acta, 335, 297–322. https://doi.org/10.1016/j.gca.2022.06.035

Hamann, Christopher., Fazio, Agnese., Ebert, Matthias., Hecht, Lutz., Wirth, Richard., Folco, Luigi., Deutsch, Alex., & Reimold, Wolf. Uwe. (2018). Silicate liquid immiscibility in impact melts. Meteoritics and Planetary Science, 53(8), 1594–1632. https://doi.org/10.1111/maps.12907

Fazio, Agnese., D’Orazio, Massimo., Cordier, Carole., & Folco, Luigi. (2016). Target-projectile interaction during impact melting at Kamil Crater, Egypt. Geochimica et Cosmochimica Acta, 180, 33–50. https://doi.org/10.1016/j.gca.2016.02.003

Fazio, Agnese., Folco, Luigi., D’Orazio, Massimo., Frezzotti, M. Luce., & Cordier, Carole. (2014). Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt. Meteoritics and Planetary Science, 49(12), 2175–2200. https://doi.org/10.1111/maps.12385

Campanale, F., Mugnaioli, E., Gemmi, M., & Folco, L. (2021). The formation of impact coesite. Scientific Reports, 11(16011). https://doi.org/10.1038/s41598-021-95432-6

Fazio, Agnese., Folco, Luigi., & Langenhorst, Falko. (2022). Possible shock-induced crystallization of skeletal quartz from supercritical SiO2-H2O fluid: A case study of impact melt from Kamil impact crater, Egypt. Geology, 50(3), 311–315. https://doi.org/10.1130/G49476.1

Folco, L., Mugnaioli, E., Gemelli, M., Masotta, M., & Campanale, F. (2018). Direct quartz-coesite transformation in shocked porous sandstone from Kamil Crater (Egypt). Geology, 46(9), 739–742. https://doi.org/10.1130/G45116.1

Folco, Luigi., D’Orazio, Massimo., Fazio, Agnese., Cordier, Carole., Zeoli, Antonio., van Ginneken, Matthias., & El-Barkooky, Ahmed. (2015). Microscopic impactor debris in the soil around Kamil crater (Egypt): Inventory, distribution, total mass, and implications for the impact scenario. Meteoritics and Planetary Science, 50(3), 382–400. https://doi.org/10.1111/maps.12427

Sighinolfi, Gian. Paolo., Sibilia, Emanuela., Contini, Gabriele., & Martini, Marco. (2015). Thermoluminescence dating of the Kamil impact crater (Egypt). Meteoritics and Planetary Science, 50(2), 204–213. https://doi.org/10.1111/maps.12417

Ott, U., Merchel, S., Herrmann, S., Pavetich, S., Rugel, G., Faestermann, T., Fimiani, L., Gomez-Guzman, J. M., Hain, K., Korschinek, G., Ludwig, P., D’Orazio, M., & Folco, L. (2014). Cosmic ray exposure and pre-atmospheric size of the Gebel Kamil iron meteorite. Meteoritics and Planetary Science, 49(8), 1365–1374. https://doi.org/10.1111/maps.12334