Woodleigh - Hypervelocity Impact Crater

Alternate Names
Local Language
Coordinates 26° 2' 7" S; 114° 38' 50" E
Notes
  1. In Southern Carnorvan Basin.
Country Australia
Region Western Australia
Date Confirmed 2000
Notes
  1. First evidence for an impact genesis confirmed by PDFs in quartz, pseudotachylite veining and enrichment in elemental meteoric components, and diaplectic vitrification of feldspar (Mory et al., 2000). Magnetic and gravity surveys completed of the general area, but no mention of cratering (Iasky et al., 1998).
Buried? Yes
Notes
  1. (Glikson et al., 2005)
Drilled? Yes
Notes
  1. Several cores. 330 m core into structural uplift
Target Type Mixed
Notes
  1. Ordovician sandstone and Precambrian basement.
Sub-Type Sandstone
Apparent Crater Diameter (km) 60 km
Age (Ma) 168 - 2005
Notes :
  1. 168-2005 Ma based on stratigraphic age constraints (Renne et al., 2002) (Sheppard et al., 2010). Previous work determined the K-Ar age of clays (alteration) to be 359 ± 4 Ma. The crater is also buried by Jurassic Woodleigh Formation (Uysal et al., 2001).

Method :
  1. Stratigraphy K-Ar
Impactor Type Chondrite
Notes
  1. Semi-quantitative Ni sulfide collection ICPMS analysis of the PGE suggests Ni/Ir values in the range of 17 000-33 000, more similar to chondrites (Ni/Ir~23 000) than to mantle pyrolite (Ni/Ir~600 000). The evidence possibly indicates the introduction of a chondrite-contaminated component through volatile and melt transport" (Mory et al., 2000).

Advanced Data Fields

Notes

Erosion
6
  1. No evidence of crater-fill in available cores.
Final Rim Diameter
Unknown
Apparent Rim Diameter
60 km
  1. 60 km diameter based on combined geophysical, geological and mineralogical evidence (Reimold and Koeberl, 2000) (Hough et al., 2003) (Reimold et al., 2003). Others suggest up to 120 km, based on geophysics and diameter of structural uplift (Mory et al., 2000).
Rim Reliability Index
3
  1. (Glickson et al., 2005) noted "The central uplift, indicated from gravity data as *32 km in diameter" though (Hough et al., 2003) prefers a smaller overall diameter". "Taking a smaller crater diameter for Woodleigh of 60–70 km, scaling indicates a central uplift of 19.7 km to 23.1 km diameter compared with the present-day figure of 25 km interpreted from geophysics" (Glickson et al., 2005). The ambiguity is due to the eroded nature of the crater.
Crater Morphology
Complex
Central Uplift Diameter
km
Central Uplift Height
Unknown
Uplift Reliability Index
Structural Uplift
Unknown
Thickness of Seds
Target Age
Precambrian Palaeozoic
Marine
No
Impactor Type
Chondrite
  1. Semi-quantitative Ni sulfide collection ICPMS analysis of the PGE suggests Ni/Ir values in the range of 17 000-33 000, more similar to chondrites (Ni/Ir~23 000) than to mantle pyrolite (Ni/Ir~600 000). The evidence possibly indicates the introduction of a chondrite-contaminated component through volatile and melt transport" (Mory et al., 2000).
Other Shock Metamorphism
Reidite shocked zircon Kink-banded biotite
  1. reidite in shocked mylonitic gneiss (Cox et al. 2018) Shock-twinned zirocn in shocked mylonitic gneiss (Cox et al. 2018) (Hough et al., 2003)"
Shatter Cones
No
  1. (Mory et al., 2001)
Planar Fractures
No
  1. "Both quartz and feldspar crystals often show 1 set of grain-pervasive, subparallel, and subplanar fractures" (Reimold et al., 2001).
Planar Deformation Features
Yes
  1. (Mory et al., 2000) (Reimold et al., 2001)
Diaplectic Glass
Yes
  1. "The abundance of diaplectic quartz and/or feldspar glass displayed by some samples requires shock pressures around 30–35 GPa" (Reimold et al., 2001).
Coesite
No
Stisovite
No
Crater Fill
  1. According to (Reimold et al., 2003) there is no evidence of melting (including pseudotachylite) and these veins are microscopic lithic breccias veins. “quartz spherules that display shock-induced lamellae” (Hough et al., 2003). "penetrative sub-horizontal pseudotachylite microbreccia vein system on a cm to micron scale" (Mory et al, 2000).
Proximal Ejecta
Distal Ejecta
Dykes
P
Volume of Melt
Depth of Melting

References

Spot a missing reference? Submit Reference

W U Reimold, C Koeberl (2000) Critical comment on: A.J. Mory et al. ‘Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure’, Earth and Planetary Science Letters 184(1), p. 353-357, url, doi:10.1016/S0012-821X(00)00282-X

A J Mory, R P Iasky, A Y Glikson, F Pirajno (2000) Response to ‘Critical comment on A.J. Mory et al., 2000, Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure’ by W.U. Reimold and C. Koeberl, Earth and Planetary Science Letters 184(1), p. 359-365, url, doi:10.1016/S0012-821X(00)00283-1

A J Mory, R P Iasky, A Y Glikson, F Pirajno (2000) Response to 'Critical comment on A.J Mory et al., 2000, Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure' by W.U. Reimold and C. Koeberl, p. 359-365, url

A J Mory, R P Iasky, A Y Glikson, F Pirajno (2000) Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure, Earth and Planetary Science Letters 177(1-2), p. 119-128, url, doi:10.1016/S0012-821X(00)00031-5

W U Reimold, C Koeberl (2000) Critical comment on: A.J. Mory et al. `Woodleigh, Carnarvon Basin, Western Australia: a new 120 km diameter impact structure', p. 353-357, url

I T Uysal, S D Golding, A Y Glikson, A J Mory (2001) K-Ar and oxygen isotopic constraints of illitic clays on the timing and evolution of the Woodleigh impact structure, Carnarvon Basin, Western Australia, Earth system processes, p. 101, Geological Society of America and Geological Society of London

I T Uysal, S D Golding, A Y Glikson, A J Mory, M Glikson (2001) K–Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia, Earth and Planetary Science Letters 192(3), p. 281-289, url, doi:10.1016/S0012-821X(01)00450-2

R M Hough, M R Lee, A W R Bevan (2001) Shocked quartz and more; Woodleigh impact structure, Western Australia, Meteoritics & Planetary Science 36(9), p. 84-85, url

I T Uysal, S D Golding, A Y Glikson, A J Mory, M Glikson (2001) K^Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia, p. 281-289, url

A J Mory (2001) The geophysical interpretation of the Woodleigh impact structure, southern Carnavon Basin, Western Australia. Geol Surv West Aust Report 79 Palaeozoic of Western Australia View project Calibrating Australian Palynozones to the Geological Timescale via CA-IDTIMS U-Pb dating View project Rp Iasky, url

A Y Glikson (2001) The astronomical connection of terrestrial evolution: crustal effects of post-3.8 Ga mega-impact clusters and evidence for major 3.2 ± 0.1 Ga bombardment of the Earth-Moon system, Journal of Geodynamics 32, p. 205-229, url, doi:10.1016/S0264-3707(01)00029-1

P R Renne, W U Reimold, C Koeberl, R Hough, P Claeys (2002) Comment on: ‘‘K–Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia’’, by I.T. Uysal, S.D. Golding, A.Y. Glikson, A.J. Mory and M. Glikson [Earth Planet. Sci, Earth and Planetary Science Letters 201(1), p. 247-252, Elsevier, Amsterdam, url, doi:10.1016/S0012-821X(02)00690-8

I T Uysal, S D Golding, A Y Glikson, A J Mory, M Glikson, R P Iasky, F Pirajno (2002) Reply to ''Comment on: 'K^Ar evidence from illitic clays of a Late Devonian age for the 120 km diameter Woodleigh impact structure, Southern Carnarvon Basin, Western Australia'', url

R M Hough, M R Lee, A W R Bevan (2003) Characterization and significance of shocked quartz from the Woodleigh impact structure, Western Australia, Meteoritics & Planetary Science 38(9), p. 1341-1350, Meteoritical Society, Fayetteville, AR, url

W U Reimold, C Koeberl, R M Hough, I Mcdonald, A W R Bevan, K Amare, B M French (2003) Woodleigh impact structure, Australia: Shock petrography and geochemical studies, Meteoritics & Planetary Science 38(7), p. 1109-1130, url

F Pirajno (2005) Hydrothermal processes associated with meteorite impact structures: evidence from three Australian examples and implications for economic resources, Australian Journal of Earth Sciences 52(4-5), p. 587-605, url, doi:10.1080/08120090500170468

P W Haines (2005) Impact cratering and distal ejecta: The Australian record, Australian Journal of Earth Sciences 52(4-5), p. 481-507, doi:10.1080/08120090500170351

F Pirajno (2005) Hydrothermal processes associated with meteorite impact structures: Evidence from three Australian examples and implications for economic resources, Australian Journal of Earth Sciences 52(4-5), p. 587-605, doi:10.1080/08120090500170468

I Tonguç Uysal, A J Mory, S D Golding, R Bolhar, K D Collerson (2005) Clay mineralogical, geochemical and isotopic tracing of the evolution of the Woodleigh impact structure, Southern Carnarvon Basin, Western Australia, Contributions to Mineralogy and Petrology 149(5), p. 576-590, Springer Verlag, url, doi:10.1007/s00410-005-0665-8

A Y Glikson, S Eggins, S D Golding, P W Haines, R P Iasky, T P Mernagh, A J Mory, F Pirajno, I T Uysal (2005) Microchemistry and microstructures of hydrothermally altered shock-metamorphosed basement gneiss, Woodleigh impact structure, Southern Carnarvon Basin, Western Australia, Australian Journal of Earth Sciences 52(4-5), p. 555-573, url, doi:10.1080/08120090500170336

A Y Glikson, A J Mory, R P Iasky, F Pirajno, S D Golding, I T Uysal (2005) Woodleigh, Southern Carnarvon Basin, Western Australia: History of discovery, Late Devonian age, and geophysical and morphometric evidence for a 120 km-diameter impact structure, Australian Journal of Earth Sciences 52(4-5), p. 545-553, url, doi:10.1080/08120090500170344

F Pirajno (2009) Hydrothermal processes associated with meteorite impacts, Hydrothermal Processes and Mineral Systems, p. 1097-1130, Dordrecht: Springer Netherlands, url, doi:10.1007/978-1-4020-8613-7_11

A Glikson, I T Uysal (2013) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia, Earth-Science Reviews 125, p. 114-122, url, doi:10.1016/j.earscirev.2013.07.002

A Glikson, I T Uysal (2013) Geophysical and structural criteria for the identification of buried impact structures, with reference to Australia, Earth-Science Reviews 125, p. 114-122, doi:10.1016/j.earscirev.2013.07.002

M A Cox, A J Cavosie, P A Bland, K Miljkovic, M T D Wingate (2018) Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh impact structure, Australia, Geology 46(11), p. 983-986, Geological Society of America, doi:10.1130/G45127.1

M S Huber, E Kovaleva (2019) Microstructural dynamics of central uplifts: Reidite offset by zircon twins at the Woodleigh impact structure, Australia, Geology 47(5), p. e465-e465, Geological Society of America, doi:10.1130/G46155C.1

S Staffieri, A Coletta, M L Battagliere, M Virelli (2019) Woodleigh, Australia, Encyclopedic Atlas of Terrestrial Impact Craters, p. 319-321, Springer International Publishing, doi:10.1007/978-3-030-05451-9_82