Red Wing - Hypervelocity Impact Crater

Alternate Names Red Wing Creek
Local Language
Coordinates 47° 34' 56" N; 103° 34' 22" W
Notes
  1. The Williston Basin, W-central North Dakota, McKenzie County, 24 km SW of Watford City.
Country United States of America
Region North Dakota
Date Confirmed 1996
Notes
  1. PDFs in quartz grains and shatter cones (Koeberl et al., 1996).
Buried? Yes
Notes
  1. Jurassic through to Neogene sedimentary formations (~1.5 km) cover the structure (Brenan et al., 1975).
Drilled? Yes
Notes
  1. 25 holes, penetrate Neogene to Jurassic sedimentary cover (to a depth of 1.5 km), and into the disturbed zone of Triassic to Silurian strata (to a max. depth of 4.4 km).
Target Type Sedimentary
Notes
  1. Silurian to Triassic rocks consisting mainly of limestones and dolomites with minor sandstones and evaporites (Brenan et al., 1975).
Sub-Type Carbonate, Dolomite, Evaporite, Sandstone
Apparent Crater Diameter (km) 9 km
Age (Ma) 167 - 250
Notes :
  1. 167-250 Ma based on stratigraphic age constraints (Brenen et al., 1975) (Koeberl et al., 1996). (Gerhard et al., 1982) noted undisturbed Jurassic sandstones and siltstones fill the ring depression and estimated the age to be 200 ± 25 Ma.

Method :
  1. Stratigraphy
Impactor Type Unknown

Advanced Data Fields

Notes

Erosion
4
  1. Rim is largely eroded although the crater-fill products are preserved (Grieve, 1982). Debris from the central uplift was transported to the ring depression (Brenan et al., 1975).
Final Rim Diameter
Unknown
Apparent Rim Diameter
9 km
  1. A circular anomaly ~9 km in diameter (Koeberl and Reimold, 1996). (Brenan et al., 1975)
Rim Reliability Index
2
  1. Seismic records and drill core samples reveal a central uplift surrounded by a ring depression and a partially eroded outer rim (Brenan et al., 1975).
Crater Morphology
Complex
Central Uplift Diameter
6.4km
Central Uplift Height
150 m
Uplift Reliability Index
2
Structural Uplift
900 m
Thickness of Seds
Target Age
Palaeozoic Mesozoic
Marine
No
Impactor Type
Other Shock Metamorphism
No
Shatter Cones
Yes
  1. Shatter cones in carbonate rocks (Brenan et al., 1975); shatter cone fragments in drill core samples.
Planar Fractures
No
Planar Deformation Features
Yes
  1. PDF (C and omega) in quartz (Koeberl and Reimold, 1996).
Diaplectic Glass
No
Coesite
No
Stisovite
No
Crater Fill
LB
  1. Lithic breccias reported, but not described. Two possible melt fragments observed, but was not confirmed because they are highly altered (Koeberl et al., 1996).
Proximal Ejecta
Distal Ejecta
Dykes
Volume of Melt
Depth of Melting

References

Spot a missing reference? Submit Reference

E S Parson Jr (1974) Red Wing Creek field, North Dakota- an extraterrestrial hydrocarbon trap, AAPG Bulletin 58(5), p. 910, American Association of Petroleum Geologists, Tulsa, OK, url, doi:http://dx.doi.org/10.1306/83D91533-16C7-11D7-8645000102C1865D

H B Sawatzky (1975) Astroblemes in Williston Basin, AAPG Bulletin 59(4), p. 694-710, American Association of Petroleum Geologists, Tulsa, OK, url, doi:10.1306/83D91CFE-16C7-11D7-8645000102C1865D

R L Brenan, B L Peterson, H J Smith (1975) The origin of Red Wing Creek structure: McKenzie County, North Dakota, Earth Science Bulletin 8(3), p. 1-42, url

L W D Bridges (1977) Red Wing Creek field, North Dakota: cryptoexplosion structure of subsurface origin rather than meteor-impact structure, AAPG Bulletin 61(8), p. 1372, American Association of Petroleum Geologists, Tulsa, OK, url, doi:http://dx.doi.org/10.1306/C1EA4469-16C9-11D7-8645000102C1865D

E S Parson, G W Henderson, L J Conti (1980) Red Wing Creek field: Cosmic impact structure, AAPG Bulletin 64(6), p. 961-961, American Association of Petroleum Geologists, Tulsa, OK, pdf, doi:10.1306/2F9193FF-16CE-11D7-8645000102C1865D

Richard R. Donofrio (1981) IMPACT CRATERS:IMPLICATIONS FOR BASEMENT HYDROCARBON PRODUCTION, Journal of Petroleum Geology 3(3), doi:10.1111/j.1747-5457.1981.tb00931.x

C Koeberl, W U Reimold (1995) Shock metamorphism at the Red Wing Creek structure, North Dakota: Confirmation of impact origin, Abstracts of the 26th Lunar and Planetary Science Conference, p. 1385-1385, url

C Koeberl, W U Reimold, D Brandt (1996) Red Wing Creek structure, North Dakota: Petrographical and geochemical studies, and confirmation of impact origin, Meteoritics and Planetary Science 31(3), p. 335-342, url, doi:10.1111/j.1945-5100.1996.tb02070.x

J G Spray, S P Kelley, D B Rowley (1998) Evidence for a late Triassic multiple impact event on Earth, Nature 392, p. 171-173, url, doi:10.1038/32397

STONE, DONALD S. (1999) Abstract: Geology of the Cloud Creek Impact Structure on the Casper Arch, Central Wyoming , AAPG Bulletin 83, doi:10.1306/e4fd303b-1732-11d7-8645000102c1865d

R Barton, K Bird, J G Hernandez, J M Grajales-Nishimura, G Murillo-Muneton, B Herber, P Weimer, C Koeberl, M Neumaier, O Schenk, J Stark (2009) High-impact reservoirs, Oilfield Review 21(4), p. 14-29, Schlumberger, Houston, TX-Cambridge, url

M Telecka, J Matyjasek (2011) Paleoposition of the chains of the meteorite craters on the Earth, Annales Universitatis Mariae Curie-Sklodowska. Sectio B: Geographia, Geologia, Mineralogia et Petrographia 66(1), p. 53-62, Uniwersytet Marii Curie-Sklodowskiej, Lublin, url, doi:10.2478/v10066-011-0003-2

Jitendra Kumar, M. S. Negi, Rajesh Sharma, D. Saha, Sanjive Mayor, Manoj Asthana (2011) RAMGARH MAGNETIC ANOMALY IN THE CHAMBAL VALLEY SECTOR OF VINDHYAN BASIN: A POSSIBLE METEORITE IMPACT STRUCTURE AND ITS IMPLICATIONS IN HYDROCARBON EXPLORATION, The 2nd South Asian Geoscience Conference and Exhibition, GEOIndia2011

Michael J. Clutson, David E. Brown, Lawrence H. Tanner (2018) Distal Processes and Effects of Multiple Late Triassic Terrestrial Bolide Impacts: Insights from the Norian Manicouagan Event, Northeastern Quebec, Canada, doi:10.1007/978-3-319-68009-5_5

Benjamin D. Herber, Paul Weimer, Renaud Bouroullec, Roger J. Barton, Daniel N. Behringer, William S. Hammon, William S. Gutterman (2022) Three-dimensional seismic interpretation of a meteorite impact feature, Red Wing Creek field, Williston Basin, western North Dakota, AAPG Bulletin 106(7), doi:10.1306/02032217261